MOCK TEST 8 (NEET) Chemistry & Biology Solutions

CHEMISTRY (SECTION – A)
51.
Sol. (C)

$$\therefore$$
 weight of 1 atom of element
 $= 6.644 \times 10^{-23} \text{ gm}$
 \therefore weight of 'N' atoms of element
 $= 6.644 \times 10^{-23} \times 6.023 \times 10^{23} = 40 \text{ gm}$
 $\therefore 40 \text{ gm}$ of element has 1 gm atom.
 $\therefore 40 \times 10^3 \text{ gm}$ of element has $\frac{40 \times 10^3}{40}$
 $= 10^3 \text{ gm}$ atom.

52.

Solution: (a)

$$\therefore 6.02 \times 10^{23} \text{ atoms of } C = 1 \text{ mole of } C$$

$$\therefore 2.65 \times 10^{22} \text{ atoms of } C = \frac{1 \times 2.65 \times 10^{22}}{6.02 \times 10^{23}} \text{ mole}$$

$$= \frac{2.65}{6.02 \times 10} = 0.044 \text{ mole}$$

Now,

Element	Relative number of moles	Simplest ratio of moles
Na	0.0887	$\frac{0.0887}{0.044} = 2$
0	0.132	$\frac{0.132}{0.044} = 3$
С	0.044	$\frac{0.044}{0.044} = 1$

Thus, the empirical formula of the compound is Na_2CO_3

53.

Solution : (d) The Bohr radius for hydrogen atom (n = 1) = 0.530Å

The radius of first excited state (n = 2) will be =

$$0.530 \times \frac{n^2}{Z} = 0.530 \times \frac{(2)^2}{1} = 2.120 \text{\AA}$$

54. Sol (a)

55.

Solution:(c) $H_2(g) + I_2(g) \rightarrow 2HI(g)$ For $2M, \Delta H = -12.40$ kcal $1M, \frac{-12.40}{2} = -6.20$ kcal

56. Solution:(a)

$$N \equiv N + 3H - H$$

$$945 + 3 \times 436$$
energy absorbed
$$H$$

$$2 \times (3 \times 391) = 2346$$
energy released
$$Ket \text{ energy (enthalpy)} = BE_{reactants} - BE_{products} = 2253 - 2346 = -93$$

$$\Delta H = -93kJ$$
57.
Solution: (b) If $\Delta G^0 = 0$ and
$$\Delta G^0 = -2.303 RT \log K_p$$

 $\log K_p = 0, K_p = 1$

58.

Solution: (b)

$$[H^+]_{Initial} = 10^{-5}; [H^+]_{final} = 10^{-2}$$

Increase in $[H^+] = \frac{10^{-2}}{10^{-5}} = 1000$ times

59.

Solution: (c)

For the salt of weak acid and weak base,

$$[H^{+}] = \sqrt{\frac{K_{w}.K_{a}}{K_{b}}} \text{ or } pH = -\frac{1}{2}[\log K_{a} + \log K_{w} - \log K_{b}]$$
$$= \frac{1}{2}[pK_{a} + pK_{w} - pK_{b}] = \frac{1}{2}[3.8 + 14 - 4.8] = 6.5$$
60. Sol (c)

61. Solution: (c)

$$\Delta T_b = K_b \times m = 0.513 \left(\frac{0.1}{200} \times 1000 \right) = 0.2565$$

; $\Delta T_b = 100.2565 \ ^o C$

62. Sol (b)

63.

Solution (a)

 $C_6H_5NO_2 + 6H^+ + 6e^- \rightarrow C_6H_5NH_2$ *i.e.*, 1 mole (123 g) require 6×96500 C. Hence 12.3 g will require $= 6 \times 9650$ C. As current efficiency is 50%, quantity of electricity actually required $= 2 \times 6 \times 9650 = 115800$ C.

64. Solution: (b)	80 B 81 B
$Ni^{2+} + 2a^- \rightarrow Ni: E^o = -0.25$ volt	81 B 82 C
$N_i + 2e \leftarrow N_i, L = 0.25$ Voli	83 D
$Zn^{2+} + 2e^- \rightleftharpoons Zn$; $E^0 = -0.77$ volt	84 A
E_{cell} = Reduction potential of cathode– Reduction	85 D
potential of anode	SECTION – B (Attempt any 10 questions)
= -0.25 - (-0.77)	86 B
=-0.25 + 0.77 = 0.52 V	87 A
	88 C
65.	89 D
Solution : (a)	90 B
$k = \frac{0.693}{0.693} = \frac{0.693}{0.693} = 6.02 \times 10^{-3} \text{ cm}^{-1}$	91 B
$k = \frac{1}{t_{1/2}} = \frac{100 \text{ sec}}{100 \text{ sec}} = 0.93 \times 10^{-10} \text{ sec}$	92 C
66 B	93 C
67 A	94 D
68 C	95 D
69 C	96 A
70 A	97 B
71 D	98 B
72 B	99 B
73 D	100 C
	101 – b, NCERT 12 th , page 115
74.	102 - d, I ^A i and I ^A I ^A gives blood group A, I ^A I ^B =
Sol. (A) NO_3^- and CO_3^{2-} both have same number	blood grp. AB, I ^B i= blood grp. B
of electrons (32 electrons) and central atom in	103 - b NCERT 11 th , page 232
each being sp ² hybridized.	104 - d
0 0	105 – a, NCERT 11 th , page 233
\int_{C} \int_{V} $SO_{2} = 40$ electrons	106 – c, NCERT 11 th , page 216, 217
$-O' O' O^O' N a O ClO_3^- = 42 electrons$	107 – b, NCERT 11 ^m , page 212, fig. 13.5
structure of structure of	108 - a
CO_3^{2-} NO_3^{-}	109 – d, NCERT 11 th , page 168, exchange of
75 A 76 C	alleles takes place between nomologous
76 C	recombination
77 C	$110 - b$ NCERT 12^{th} page 85
70 D	110 = 0, NCERT 12, page 05 111 = 9
79 D	$112 - h$ NCFRT 12^{th} page 119
80.	112 - a NCERT 11 th page 23
Sol. (B) All the given I.U.P.A.C. names are	114 - c, NCERT 12 th , page 107, 108
correct except 1-amino-1-ethoxypropane	115 – a
	116 – d. NCERT 12 th , page 87
$H_2N - C - CH_2 - CH_3$	117- d, NCERT 12 th , page 114
$U_2\Pi_5$ It's correct IIIPAC name is	118 – b, NCERT 11 th , page 170
ethoxy -1- amino propane.	119 – b, NCERT 12 th , page 117
· · · · · · · · · · · · · · · · · · ·	120 – d
	121- c, the resultant zygote will have XXY
	genotype i.e. for Klinefelter's syndrome

MOCK TEST 8 (NEET) Chemistry & Biology Solutions

158 - c, NCERT 11th, page 318, 319, 320 122 - b, Pleiotropy is where one gene controls 159 – d, NCERT 11th, page 321 more than one character 123 –c, NCERT 11th, page 223 124- d, NCERT 11th, page 233, fig.14.4 160 – d, NCERT 11th, page 145 161 – a, NCERT 12th, page 212 162 – b, NCERT 12th, page 51 125-b, zygospore is diploid, all others are 163 – d, NCERT 11th, page 297 haploid 126 - d, NCERT 11th, page 26 164 – c, NCERT 12th, page 157 165 – a, NCERT 12th, page 162 127 - a, NCERT 11th, page 32, 33 128 - c, NCERT 12th, page 183 166 – a, NCERT 11th, page 317, 320, 321 129 - d, NCERT 11th, page 138, 139 167 - d. Aedes is an arthropod with chitinous 130 - c, NCERT 11th, page 131, 132 exoskeleton while all others have endoskeleton 131 - a, Growth rate = b-d/t= 25-55/10=-3168 – a 132 – a, NCERT 11th, page 213, 214 169 – c, NCERT 11th, page 59 170 – a, NCERT 12th, page 153 133 – d, NCERT 11th, page 79 for Soyabean ; 171 – b, NCERT 11th, page 55 10 stamens in 10 flowers = 100 stamens total, 172 - c, NCERT 11th, page 102 In each anther 4 microsporangium present so 173 – b, NCERT 11th, page 104 total = 100 x 4 = 400174 – c, NCERT 12th, page 64 In each microsporangium, 10 PMC, so in all, 175 – a, NCERT 12th, page 59 400 x 10= 4000 PMC 176 – b, NCERT 11th, page 339 Each PMC on meiosis gives 4 microspores, so 177 – b, NCERT 12th, page 47, 48 total microspores = $4000 \times 4 = 16,000$ 134 – b, NCERT 12th, page 33 178 – b 179 - c, NCERT 12th , page 43, fig. 3.1a 135 – b, nucellus, suspensor, cotyledon and 180 – c, NCERT 11th, page 340 integument diploid 181 – d, NCERT 11th, page 335 136 – b, Cell- the unit of life; In plant cells, 182 – b, CO binds to hemoglobin at O2 binding DNA is found in nucleus, mitochondria and in chloroplast site and so reduces O2 carried by hemoglobin 137 – c, NCERT 11th, page 250 in blood 138 - a, NCERT 12th, page 249 183 - b, 184 – d, NCERT 11th, page 298 139 – d, 185 – d, NCERT 11th, page 294, 295 fig. 19.5 140 – b, family includes a group of genera 186 – b. 141 – d 187 – b, NCERT 11th, page 112, fig 7.15 142 - a188 – b, NCERT 11th , page 112, 11g 111 189 – c, NCERT 11th , page 302, 303 190 – c, NCERT 12th , page 130, 131 143 – b, 144 – a 145 - c, NCERT 11th, page 76 191 – b, NCERT 12th, page 139, fig. 7.10 146 – c, NCERT 11th, page 94 147 – a, NCERT 11th, page 10, if order is same, 192 - c, for percentage of heterozygous it must be placed in one larger class individuals. 148 - c, NCERT 12th, page 263 $2pq = 2 \times 0.19 \times 0.81 = 0.31 \text{ or } 31\%$ 149 - c, NCERT 12th, page 265 193 – d, NCERT 12th, page 141 150 - c, NCERT 11th, page 91 194 – a, NCERT 11th, page 144 151 - d, NCERT 11th, page 145 195 – a, NCERT 12th, page 204, fig.11.7 152 – b, NCERT 11th, page 285 196 – d, NCERT 12th, page 60, fig. 4.2 153 – d, NCERT 12th, page 152 197 – a, NCERT 12th, page 51 154 – a, NCERT 11th, page 156, fig. 9.6 198 – a, NCERT 12th, page 59, 60 155 – a, NCERT 11th, page 150, fig. 9.3 199 – d, NCERT 11th, page 309 156 – a, NCERT 11th, page 293 200 – c, NCERT 12th, page 213 157 – b, NCERT 12th, page 48, 49